Nonstandard methods in combinatorial number theory

Lorenzo Luperi Baglini

Joint work with Mauro Di Nasso

Wolfgang Pauli Institute

AILA 2017

• Is it true that for every finite partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ there exist $i \leq k$ and $x, y, z \in A_i$ such that $x^2 + y^2 = z^2$?

- Is it true that for every finite partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ there exist $i \leq k$ and $x, y, z \in A_i$ such that $x^2 + y^2 = z^2$?
- Is it true that for every finite partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ there exist $i \leq k$ and $x, y \in A_i$ such that $x + y, x \cdot y \in A_i$?

- Is it true that for every finite partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ there exist $i \leq k$ and $x, y, z \in A_i$ such that $x^2 + y^2 = z^2$?
- Is it true that for every finite partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ there exist $i \leq k$ and $x, y \in A_i$ such that $x + y, x \cdot y \in A_i$?
- Is it true that for every finite partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ there exist $i \leq k$ and $x, y \in A_i$ such that $x^y \in A_i$?

- Is it true that for every finite partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ there exist $i \leq k$ and $x, y, z \in A_i$ such that $x^2 + y^2 = z^2$?
- Is it true that for every finite partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ there exist $i \leq k$ and $x, y \in A_i$ such that $x + y, x \cdot y \in A_i$?
- Is it true that for every finite partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ there exist $i \leq k$ and $x, y \in A_i$ such that $x^y \in A_i$?
- Is it true that for every $A \subseteq \mathbb{N}$ if BD(A) > 0 then there exist infinite sets X, Y such that $X + Y \subseteq A$?

We say that a polynomial $P(x_1, ..., x_n)$ is partition regular on $\mathbb{N} = \{1, 2, ...\}$ if whenever the natural numbers are finitely colored there exists a monochromatic solution to the equation $P(x_1, ..., x_n) = 0$.

We say that a polynomial $P(x_1, ..., x_n)$ is partition regular on $\mathbb{N} = \{1, 2, ...\}$ if whenever the natural numbers are finitely colored there exists a monochromatic solution to the equation $P(x_1, ..., x_n) = 0$.

Theorem (Rado)

Let $P(x_1, ..., x_n) = \sum_{i=1}^n a_i x_i$ be a linear polynomial. The following conditions are equivalent:

We say that a polynomial $P(x_1, ..., x_n)$ is partition regular on $\mathbb{N} = \{1, 2, ...\}$ if whenever the natural numbers are finitely colored there exists a monochromatic solution to the equation $P(x_1, ..., x_n) = 0$.

Theorem (Rado)

Let $P(x_1, ..., x_n) = \sum_{i=1}^n a_i x_i$ be a linear polynomial. The following conditions are equivalent:

•
$$P(x_1,...,x_n)$$
 is partition regular on \mathbb{N} ;

We say that a polynomial $P(x_1, ..., x_n)$ is partition regular on $\mathbb{N} = \{1, 2, ...\}$ if whenever the natural numbers are finitely colored there exists a monochromatic solution to the equation $P(x_1, ..., x_n) = 0$.

Theorem (Rado)

Let $P(x_1, ..., x_n) = \sum_{i=1}^n a_i x_i$ be a linear polynomial. The following conditions are equivalent:

9
$$P(x_1,...,x_n)$$
 is partition regular on \mathbb{N} ;

2 there is a nonempty subset J of
$$\{1, ..., n\}$$
 such that $\sum_{j \in J} a_j = 0$

Definition

Definition

A family $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if the following conditions hold: • $\varnothing \notin \mathcal{U}$;

Definition

Definition

Definition

- for every $A \subseteq \mathbb{N}$ $A \in \mathcal{U}$ or $A^c \in \mathcal{U}$.

Definition

A family $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if the following conditions hold:

- for every $A \subseteq \mathbb{N}$ $A \in \mathcal{U}$ or $A^c \in \mathcal{U}$.

Definition

 $A \in \mathcal{U} \oplus \mathcal{V} \Leftrightarrow \{n \in \mathbb{N} \mid A - n \in \mathcal{V}\} \in \mathcal{U}.$

Definition

A family $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if the following conditions hold:

- for every $A \subseteq \mathbb{N}$ $A \in \mathcal{U}$ or $A^c \in \mathcal{U}$.

Definition

 $A \in \mathcal{U} \oplus \mathcal{V} \Leftrightarrow \{n \in \mathbb{N} \mid A - n \in \mathcal{V}\} \in \mathcal{U}.$

Fact: Since the '70s, ultrafilters have been one of the main tools to prove results in combinatorial number theory.

Translation in terms of Ultrafilters

Definition

Let $P(x_1, ..., x_n)$ be a polynomial, and \mathcal{U} an ultrafilter on \mathbb{N} . We say that \mathcal{U} is a $\sigma_{\mathbf{P}}$ -ultrafilter if and only if for every set $A \in \mathcal{U}$ there are $a_1, ..., a_n \in A$ such that $P(a_1, ..., a_n) = 0$.

Translation in terms of Ultrafilters

Definition

Let $P(x_1, ..., x_n)$ be a polynomial, and \mathcal{U} an ultrafilter on \mathbb{N} . We say that \mathcal{U} is a $\sigma_{\mathbf{P}}$ -ultrafilter if and only if for every set $A \in \mathcal{U}$ there are $a_1, ..., a_n \in A$ such that $P(a_1, ..., a_n) = 0$.

Theorem

 $P(x_1, ..., x_n)$ is partition regular if and only if there exists a σ_P -ultrafilter.

Translation in terms of Ultrafilters

Definition

Let $P(x_1, ..., x_n)$ be a polynomial, and \mathcal{U} an ultrafilter on \mathbb{N} . We say that \mathcal{U} is a $\sigma_{\mathbf{P}}$ -ultrafilter if and only if for every set $A \in \mathcal{U}$ there are $a_1, ..., a_n \in A$ such that $P(a_1, ..., a_n) = 0$.

Theorem

 $P(x_1, ..., x_n)$ is partition regular if and only if there exists a σ_P -ultrafilter.

Sets of Generators of ${\cal U}$

Let \mathbb{N} be an hyperextension of \mathbb{N} satisfying the \mathfrak{c}^+ -enlarging property.

Sets of Generators of ${\cal U}$

Let \mathbb{N} be an hyperextension of \mathbb{N} satisfying the \mathfrak{c}^+ -enlarging property.

Definition

Given an ultrafilter \mathcal{U} on \mathbb{N} , its set of generators is

 $G_{\mathcal{U}} = \{ \alpha \in^* \mathbb{N} \mid \mathcal{U} = \mathfrak{U}_{\alpha} \},\$

where $\mathfrak{U}_{\alpha} = \{A \subseteq \mathbb{N} \mid \alpha \in A\}.$

Sets of Generators of ${\cal U}$

Let \mathbb{N} be an hyperextension of \mathbb{N} satisfying the \mathfrak{c}^+ -enlarging property.

Definition

Given an ultrafilter \mathcal{U} on \mathbb{N} , its set of generators is

$$G_{\mathcal{U}} = \{ \alpha \in^* \mathbb{N} \mid \mathcal{U} = \mathfrak{U}_{\alpha} \},\$$

where $\mathfrak{U}_{\alpha} = \{A \subseteq \mathbb{N} \mid \alpha \in A\}.$

If we work in an extension that allows for the iteration of the *-map, we also have that

$$\mathfrak{U}_{\alpha} \oplus \mathfrak{U}_{\beta} = \mathfrak{U}_{\ast \beta + \alpha}, \mathfrak{U}_{\alpha} \odot \mathfrak{U}_{\beta} = \mathfrak{U}_{\ast \beta \cdot \alpha}.$$

Theorem

Let $P(x_1, ..., x_n)$ be a polynomial, and \mathcal{U} an ultrafilter on $\beta \mathbb{N}$. The following two conditions are equivalent:

Theorem

Let $P(x_1, ..., x_n)$ be a polynomial, and \mathcal{U} an ultrafilter on $\beta \mathbb{N}$. The following two conditions are equivalent:

• \mathcal{U} is a σ_P -ultrafilter;

Theorem

Let $P(x_1, ..., x_n)$ be a polynomial, and \mathcal{U} an ultrafilter on $\beta \mathbb{N}$. The following two conditions are equivalent:

- \mathcal{U} is a σ_P -ultrafilter;
- 2 there are elements $\alpha_1, ..., \alpha_n$ in $G_{\mathcal{U}}$ such that $P(\alpha_1, ..., \alpha_n) = 0$.

Theorem

Let $P(x_1, ..., x_n)$ be a polynomial, and \mathcal{U} an ultrafilter on $\beta \mathbb{N}$. The following two conditions are equivalent:

- \mathcal{U} is a σ_P -ultrafilter;
- 2 there are elements $\alpha_1, ..., \alpha_n$ in $G_{\mathcal{U}}$ such that $P(\alpha_1, ..., \alpha_n) = 0$.

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is partition regular.

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in \mathbb{N}$ a generator of \mathcal{U} .

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in \mathbb{N}$ a generator of \mathcal{U} . Then $*\alpha \in G_{\mathcal{U}}$ and $\alpha + *\alpha \in G_{\mathcal{U}}$,

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in \mathbb{N}$ a generator of \mathcal{U} . Then $*\alpha \in G_{\mathcal{U}}$ and $\alpha + *\alpha \in G_{\mathcal{U}}$, and

 $P(\alpha, \ ^*\alpha, \alpha + \ ^*\alpha) = 0.$

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in \mathbb{N}$ a generator of \mathcal{U} . Then $*\alpha \in G_{\mathcal{U}}$ and $\alpha + *\alpha \in G_{\mathcal{U}}$, and

$$P(\alpha, \ ^*\alpha, \alpha + \ ^*\alpha) = 0.$$

Theorem (Hindman)

The polynomial P(x, y, u, v) : x + y - uv is partition regular.

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in \mathbb{N}$ a generator of \mathcal{U} . Then $*\alpha \in G_{\mathcal{U}}$ and $\alpha + *\alpha \in G_{\mathcal{U}}$, and

$$P(\alpha, \ ^*\alpha, \alpha + \ ^*\alpha) = 0.$$

Theorem (Hindman)

The polynomial P(x, y, u, v) : x + y - uv is partition regular.

Proof: Let \mathcal{U} be a multiplicatively idempotent Schur's ultrafilter.

Examples

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in \mathbb{N}$ a generator of \mathcal{U} . Then $*\alpha \in G_{\mathcal{U}}$ and $\alpha + *\alpha \in G_{\mathcal{U}}$, and

$$P(\alpha, \ ^*\alpha, \alpha + \ ^*\alpha) = 0.$$

Theorem (Hindman)

The polynomial P(x, y, u, v) : x + y - uv is partition regular.

Proof: Let \mathcal{U} be a multiplicatively idempotent Schur's ultrafilter. Let $\alpha, \beta, \gamma \in G_{\mathcal{U}}$ be such that $\alpha + \beta = \gamma$.

Examples

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in \mathbb{N}$ a generator of \mathcal{U} . Then $*\alpha \in G_{\mathcal{U}}$ and $\alpha + *\alpha \in G_{\mathcal{U}}$, and

$$P(\alpha, \ ^*\alpha, \alpha + \ ^*\alpha) = 0.$$

Theorem (Hindman)

The polynomial P(x, y, u, v) : x + y - uv is partition regular.

Proof: Let \mathcal{U} be a multiplicatively idempotent Schur's ultrafilter. Let $\alpha, \beta, \gamma \in G_{\mathcal{U}}$ be such that $\alpha + \beta = \gamma$. Then

$$\alpha \cdot \ ^*\alpha + \beta \cdot \ ^*\alpha = \gamma \cdot \ ^*\alpha$$

Examples

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in \mathbb{N}$ a generator of \mathcal{U} . Then $*\alpha \in G_{\mathcal{U}}$ and $\alpha + *\alpha \in G_{\mathcal{U}}$, and

$$P(\alpha, \ ^*\alpha, \alpha + \ ^*\alpha) = 0.$$

Theorem (Hindman)

The polynomial P(x, y, u, v) : x + y - uv is partition regular.

Proof: Let \mathcal{U} be a multiplicatively idempotent Schur's ultrafilter. Let $\alpha, \beta, \gamma \in G_{\mathcal{U}}$ be such that $\alpha + \beta = \gamma$. Then

$$\alpha \cdot \ ^*\alpha + \beta \cdot \ ^*\alpha = \gamma \cdot \ ^*\alpha$$

and we conclude setting $x = \alpha \cdot \ ^*\alpha, y = \beta \cdot \ ^*\alpha, u = \alpha, v = \ ^*\alpha.$

Theorem

Let \mathfrak{F} be the family of functions whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$.

Theorem

Let \mathfrak{F} be the family of functions whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\bigcirc) \cap \overline{K(\bigcirc)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$. Then \mathfrak{F} includes:

Theorem

Let \mathfrak{F} be the family of functions whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\bigcirc) \cap \overline{K(\bigcirc)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$. Then \mathfrak{F} includes:

• Every Rado polynomial

$$c_1x_1 + \ldots + c_nx_n + P(y_1, \ldots, y_k)$$

with injectivity $|\{x_1, \ldots, x_n\}| \ge n-1$ and $|\{y_1, \ldots, y_k\}| = k$, and with injectivity $|\{x_1, x_2\}| = 2$ when n = 2 and k = 1, and with full injectivity $|\{x_1, \ldots, x_n, y_1, \ldots, y_k\}| = n + k$ when $P \ne 0$ is linear;

Theorem

Let \mathfrak{F} be the family of functions whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\bigcirc) \cap \overline{K(\bigcirc)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$. Then \mathfrak{F} includes:

• Every Rado polynomial

$$c_1x_1 + \ldots + c_nx_n + P(y_1, \ldots, y_k)$$

with injectivity $|\{x_1, \ldots, x_n\}| \ge n-1$ and $|\{y_1, \ldots, y_k\}| = k$, and with injectivity $|\{x_1, x_2\}| = 2$ when n = 2 and k = 1, and with full injectivity $|\{x_1, \ldots, x_n, y_1, \ldots, y_k\}| = n + k$ when $P \ne 0$ is linear;

• Every polynomial of the form

$$\sum_{i=1}^{n} c_i \, x_i \left(\prod_{j \in F_i} y_j \right)$$

where $\sum_{i=1}^{n} c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \ldots, m\}$, with full injectivity when n > 2, and with injectivity $|\{x_1, x_2, y_1, \ldots, y_m\}| \ge m + 1$ when n = 2;

Theorem

• Every function f of the form

$$f(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i$$

with full injectivity $|\{x, y_1, \ldots, y_k\}| = k + 1;$

Theorem

• Every function f of the form

$$f(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i$$

with full injectivity $|\{x, y_1, \ldots, y_k\}| = k + 1;$

• Every function f of the form

$$f(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i^{a_i}$$

with full injectivity $|\{x, y_1, \ldots, y_k\}| = k + 1$, whenever the exponents $a_i \in \mathbb{Z}$ satisfy $\sum_{i=1}^n a_i = 1$.

Moreover, the family $\mathfrak F$ satisfies a technical closure properties.

Moreover, the family $\mathfrak F$ satisfies a technical closure properties.

Example: \mathcal{U} witnesses the partition regularity of

$$\begin{cases} x_1 = x_2 + 7x_3 \\ t = y_1^2 y_2^{-1} \end{cases}$$

Moreover, the family $\mathfrak F$ satisfies a technical closure properties.

Example: \mathcal{U} witnesses the partition regularity of

$$\begin{cases} x_1 = x_2 + 7x_3 \\ t = y_1^2 y_2^{-1} \\ x_1 = t \end{cases}$$

Moreover, the family $\mathfrak F$ satisfies a technical closure properties.

Example: \mathcal{U} witnesses the partition regularity of

$$\begin{cases} x_1 = x_2 + 7x_3 \\ t = y_1^2 y_2^{-1} \\ x_1 = t \end{cases}$$

So we get the partition regularity of the equation

Moreover, the family $\mathfrak F$ satisfies a technical closure properties.

Example: \mathcal{U} witnesses the partition regularity of

$$\begin{cases} x_1 = x_2 + 7x_3 \\ t = y_1^2 y_2^{-1} \\ x_1 = t \end{cases}$$

So we get the partition regularity of the equation

$$x_2 + 7x_3 = y_1^2 y_2^{-1}.$$

We use the p-expansions of numbers and many tools of nonstandard analysis.

We use the p-expansions of numbers and many tools of nonstandard analysis.

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be an homogeneous polynomial.

We use the p-expansions of numbers and many tools of nonstandard analysis.

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be an homogeneous polynomial. If for every nonempty $J \subseteq supp(P)$ one has $\sum_{\alpha \in J} c_{\alpha} \neq 0$, then $P(\mathbf{x})$ is not PR.

We use the p-expansions of numbers and many tools of nonstandard analysis.

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be an homogeneous polynomial. If for every nonempty $J \subseteq supp(P)$ one has $\sum_{\alpha \in J} c_{\alpha} \neq 0$, then $P(\mathbf{x})$ is not PR.

Example: $x^2 + y^2 - 3z^2$ is not PR.

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term.

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following "Rado's condition" is satisfied:

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following "Rado's condition" is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $d_i = d_j$ for every $i, j \in J$, and $\sum_{j \in J} c_{j,d_j} = 0$."

13 / 14

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following "Rado's condition" is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $d_i = d_j$ for every $i, j \in J$, and $\sum_{j \in J} c_{j,d_j} = 0$."

Example:

13 / 14

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following "Rado's condition" is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $d_i = d_j$ for every $i, j \in J$, and $\sum_{j \in J} c_{j,d_j} = 0$."

Example:

The polynomial
$$P(x, y) = x^3 + 2x + y^3 - 2y$$
 is not PR.

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following "Rado's condition" is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $d_i = d_j$ for every $i, j \in J$, and $\sum_{j \in J} c_{j,d_j} = 0$."

Example:

• The polynomial
$$P(x, y) = x^3 + 2x + y^3 - 2y$$
 is not PR.

2 If $k \notin \{n, m\}$, the polynomial $x^n + y^m - z^k$ is not PR.

Thank You!

 $email:\ lorenzo.luperi.baglini@univie.ac.at$